Where To Buy Infrared Heat Lamp
An infrared heater or heat lamp is a heating appliance containing a high-temperature emitter that transfers energy to a cooler object through electromagnetic radiation. Depending on the temperature of the emitter, the wavelength of the peak of the infrared radiation ranges from 750 nm to 1 mm. No contact or medium between the emitter and cool object is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.
where to buy infrared heat lamp
German-British astronomer Sir William Herschel is credited with the discovery of infrared in 1800. He made an instrument called a spectrometer to measure the magnitude of radiant power at different wavelengths. This instrument was made from three pieces. The first was a prism to catch the sunlight and direct and disperse the colors down onto a table, the second was a small panel of cardboard with a slit wide enough for only a single color to pass through it and finally, three mercury-in-glass thermometers. Through his experiment Herschel found that red light had the highest degree of temperature change in the light spectrum, however, infrared heating was not commonly used until World War II. During World War II infrared heating became more widely used and recognized. The main applications were in the metal finishing fields, particularly in the curing and drying of paints and lacquers on military equipment. Banks of lamp bulbs were used very successfully; though by today's standards the power intensities were very low, the technique offered much faster drying times than the fuel convection ovens of the time. After World War II the adoption of infrared heating techniques continued but on a much slower basis. In the mid 1950s the motor vehicle industry began to show interest in the capabilities of infrared for paint curing and a number of production line infrared tunnels came into use.[1][2][3]
The most common filament material used for electrical infrared heaters is tungsten wire, which is coiled to provide more surface area. Low temperature alternatives for tungsten are carbon, or alloys of iron, chromium, and aluminum (trademark and brand name Kanthal). While carbon filaments are more fickle to produce, they heat up much more quickly than a comparable medium-wave heater based on a FeCrAl filament.
When light is undesirable or not necessary in a heater, ceramic infrared radiant heaters are the preferred choice. Containing 8 meters (26 ft) of coiled alloy resistance wire, they emit a uniform heat across the entire surface of the heater and the ceramic is 90% absorbent of the radiation. As absorption and emission are based on the same physical causes in each body, ceramic is ideally suited as a material for infrared heaters.
Industrial infrared heaters sometimes use a gold coating on the quartz tube that reflects the infrared radiation and directs it towards the product to be heated. Consequently, the infrared radiation impinging on the product is virtually doubled. Gold is used because of its oxidation resistance and very high infrared reflectivity of approximately 95%.[4]
Near infrared (NIR) or short-wave infrared heaters operate at high filament temperatures above 1,800 C (3,270 F) and when arranged in a field reach high power densities of some hundreds of kW/m2. Their peak wavelength is well below the absorption spectrum for water, making them unsuitable for many drying applications. They are well suited for heating of silica where a deep penetration is needed.
Medium-wave (MWIR) and carbon infrared heaters operate at filament temperatures of around 1,000 C (1,830 F). They reach maximum power densities of up to 60 kW/m2 (5.6 kW/sq ft) (medium-wave) and 150 kW/m2 (14 kW/sq ft) (carbon).
Far infrared emitters (FIR) are typically used in the so-called low-temperature far infrared saunas. These constitute only the higher and more expensive range of the market of infrared sauna. Instead of using carbon, quartz or high watt ceramic emitters, which emit near and medium infrared radiation, heat and light, far infrared emitters use low watt ceramic plates that remain cold, while still emitting far infrared radiation.
A heat lamp is an incandescent light bulb that is used for the principal purpose of creating heat. The spectrum of black-body radiation emitted by the lamp is shifted to produce more infrared light. Many heat lamps include a red filter to minimize the amount of visible light emitted. Heat lamps often include an internal reflector.
Heat lamps are commonly used in shower and bathrooms to warm bathers and in food-preparation areas of restaurants to keep food warm before serving. They are also commonly used for animal husbandry. Lights used for poultry are often called brooding lamps. Aside from young birds, other types of animals which can benefit from heat lamps include reptiles, amphibians, insects, arachnids, and the young of some mammals.
The sockets used for heat lamps are usually ceramic because plastic sockets can melt or burn when exposed to the large amount of waste heat produced by the lamps, especially when operated in the "base up" position. The shroud or hood of the lamp is generally metal. There may be a wire guard over the front of the shroud, to prevent touching the hot surface of the bulb.
Ordinary household white incandescent bulbs can also be used as heat lamps, but red and blue bulbs are sold for use in brood lamps and reptile lamps. 250 watt heat lamps are commonly packaged in the "R40" (5" reflector lamp) form factor with an intermediate screw base.
This heating technology is used in some expensive infrared saunas. It is also found in energy efficient space heaters. They are usually fairly big flat panels that are placed on walls, ceilings[7] or integrated in floors.[8] These heaters emit long wave infrared radiation using low watt density ceramic emitters based on carbon fibre technology. More efficient designs use carbon crystals, a combination of carbon fibre, integrated with nanotechnology, transforming carbon into nanometer form.[9] Because the heating elements are at a relatively low temperature, far-infrared heaters do not give emissions and smell from dust, dirt, formaldehyde, toxic fumes from paint-coating, etc.[citation needed] This has made this type of space heating very popular among people with severe allergies and multiple chemical sensitivity in Europe.[citation needed] Because far infrared technology does not heat the air of the room directly, it is important to maximize the exposure of available surfaces which then re-emit the warmth to provide an even all round ambient warmth. This is known as radiant heating.[citation needed]
Halogen lamps are incandescent lamps filled with highly pressurized inert gas combined with a small amount of halogen gas (bromine or iodine); this lengthens the life of the filament (see .mw-parser-output div.crossreferencepadding-left:0.mw-parser-output .hatnotefont-style:italic.mw-parser-output div.hatnotepadding-left:1.6em;margin-bottom:0.5em.mw-parser-output .hatnote ifont-style:normal.mw-parser-output .hatnote+link+.hatnotemargin-top:-0.5emHalogen lamp#Halogen cycle). This leads to a much longer life of halogen lamps than other incandescent lamps. Due to the high pressure and temperature halogen lamps produce, they are relatively small and made out of quartz glass because it has a higher melting point than standard glass. Common uses for halogen lamps are table top heaters.[10][11]
Quartz heat lamps are used in food processing, chemical processing, paint drying, and thawing of frozen materials. They can also be used for comfort heating in cold areas, in incubators, and in other applications for heating, drying, and baking. During development of space re-entry vehicles, banks of quartz infrared lamps were used to test heat shield materials at power densities as high as 28 kW/sq ft (300 kW/m2).[12]
Most common designs consist of either a satin milky-white quartz glass tube or clear quartz with an electrically resistant element, usually a tungsten wire, or a thin coil of iron-chromium-aluminum alloy. The atmospheric air is removed and filled with inert gases such as nitrogen and argon then sealed. In quartz halogen lamps, a small amount of halogen gas is added to prolong the heater's operational life.
The majority of the radiant energy released at operational temperatures is transmitted through the thin quartz tube but some of that energy is absorbed by the silica quartz glass tube causing the temperature of the tube wall to increase, this causes the silicon-oxygen bond to radiate far infrared rays.[citation needed] Quartz glass heating elements were originally designed for lighting applications, but when a lamp is at full power less than 5% of the emitted energy is in the visible spectrum.[13]
Quartz tungsten infrared heaters emit medium wave energy reaching operating temperatures of up to 1,500 C (2,730 F) (medium wave) and 2,600 C (4,710 F) (short wave). They reach operating temperature within seconds. Peak wavelength emissions of approximately 1.6 μm (medium wave infrared) and 1 μm (short wave infrared).
Carbon heaters use a carbon fiber heating element capable of producing long, medium and short wave far infrared heat. They need to be accurately specified for the spaces to be heated.[citation needed]
The efficiency of an infrared heater is a rating of the total energy consumed by the heater compared to the amount of infrared energy generated. While there will always be some amount of convective heat generated through the process, any introduction of air motion across the heater will reduce its infrared conversion efficiency. With new untarnished reflectors, radiant tubes have a downward radiant efficiency of about 60%. (The other 40% comprises unrecoverable upwards radiant and convective losses, and flue losses.)
In addition to the dangers of touching the hot bulb or element, high-intensity short-wave infrared radiation may cause indirect thermal burns when the skin is exposed for too long or the heater is positioned too close to the subject. Individuals exposed to large amounts of infrared radiation (like glass blowers and arc welders) over an extended period of time may develop depigmentation of the iris and opacity of the aqueous humor, so exposure should be moderated.[14] 041b061a72